Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 626(7999): 555-564, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356065

RESUMO

The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern1-3. For 65 million years, Amazonian forests remained relatively resilient to climatic variability. Now, the region is increasingly exposed to unprecedented stress from warming temperatures, extreme droughts, deforestation and fires, even in central and remote parts of the system1. Long existing feedbacks between the forest and environmental conditions are being replaced by novel feedbacks that modify ecosystem resilience, increasing the risk of critical transition. Here we analyse existing evidence for five major drivers of water stress on Amazonian forests, as well as potential critical thresholds of those drivers that, if crossed, could trigger local, regional or even biome-wide forest collapse. By combining spatial information on various disturbances, we estimate that by 2050, 10% to 47% of Amazonian forests will be exposed to compounding disturbances that may trigger unexpected ecosystem transitions and potentially exacerbate regional climate change. Using examples of disturbed forests across the Amazon, we identify the three most plausible ecosystem trajectories, involving different feedbacks and environmental conditions. We discuss how the inherent complexity of the Amazon adds uncertainty about future dynamics, but also reveals opportunities for action. Keeping the Amazon forest resilient in the Anthropocene will depend on a combination of local efforts to end deforestation and degradation and to expand restoration, with global efforts to stop greenhouse gas emissions.


Assuntos
Florestas , Aquecimento Global , Árvores , Secas/estatística & dados numéricos , Retroalimentação , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , Árvores/crescimento & desenvolvimento , Incêndios Florestais/estatística & dados numéricos , Incerteza , Recuperação e Remediação Ambiental/tendências
2.
Nat Commun ; 12(1): 2310, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875648

RESUMO

Non-structural carbohydrates (NSC) are major substrates for plant metabolism and have been implicated in mediating drought-induced tree mortality. Despite their significance, NSC dynamics in tropical forests remain little studied. We present leaf and branch NSC data for 82 Amazon canopy tree species in six sites spanning a broad precipitation gradient. During the wet season, total NSC (NSCT) concentrations in both organs were remarkably similar across communities. However, NSCT and its soluble sugar (SS) and starch components varied much more across sites during the dry season. Notably, the proportion of leaf NSCT in the form of SS (SS:NSCT) increased greatly in the dry season in almost all species in the driest sites, implying an important role of SS in mediating water stress in these sites. This adjustment of leaf NSC balance was not observed in tree species less-adapted to water deficit, even under exceptionally dry conditions. Thus, leaf carbon metabolism may help to explain floristic sorting across water availability gradients in Amazonia and enable better prediction of forest responses to future climate change.


Assuntos
Carboidratos/análise , Secas , Florestas , Estações do Ano , Árvores/metabolismo , Água/metabolismo , Bolívia , Brasil , Metabolismo dos Carboidratos , Mudança Climática , Geografia , Peru , Folhas de Planta/metabolismo , Açúcares/metabolismo , Árvores/classificação , Clima Tropical
3.
New Phytol ; 223(3): 1253-1266, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31077396

RESUMO

Reducing uncertainties in the response of tropical forests to global change requires understanding how intra- and interannual climatic variability selects for different species, community functional composition and ecosystem functioning, so that the response to climatic events of differing frequency and severity can be predicted. Here we present an extensive dataset of hydraulic traits of dominant species in two tropical Amazon forests with contrasting precipitation regimes - low seasonality forest (LSF) and high seasonality forest (HSF) - and relate them to community and ecosystem response to the El Niño-Southern Oscillation (ENSO) of 2015. Hydraulic traits indicated higher drought tolerance in the HSF than in the LSF. Despite more intense drought and lower plant water potentials in HSF during the 2015-ENSO, greater xylem embolism resistance maintained similar hydraulic safety margin as in LSF. This likely explains how ecosystem-scale whole-forest canopy conductance at HSF maintained a similar response to atmospheric drought as at LSF, despite their water transport systems operating at different water potentials. Our results indicate that contrasting precipitation regimes (at seasonal and interannual time scales) select for assemblies of hydraulic traits and taxa at the community level, which may have a significant role in modulating forest drought response at ecosystem scales.


Assuntos
Secas , El Niño Oscilação Sul , Florestas , Água , Folhas de Planta/fisiologia , Probabilidade , Chuva , Estações do Ano , Especificidade da Espécie
4.
Proc Natl Acad Sci U S A ; 113(39): 10759-68, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27638214

RESUMO

For half a century, the process of economic integration of the Amazon has been based on intensive use of renewable and nonrenewable natural resources, which has brought significant basin-wide environmental alterations. The rural development in the Amazonia pushed the agricultural frontier swiftly, resulting in widespread land-cover change, but agriculture in the Amazon has been of low productivity and unsustainable. The loss of biodiversity and continued deforestation will lead to high risks of irreversible change of its tropical forests. It has been established by modeling studies that the Amazon may have two "tipping points," namely, temperature increase of 4 °C or deforestation exceeding 40% of the forest area. If transgressed, large-scale "savannization" of mostly southern and eastern Amazon may take place. The region has warmed about 1 °C over the last 60 y, and total deforestation is reaching 20% of the forested area. The recent significant reductions in deforestation-80% reduction in the Brazilian Amazon in the last decade-opens up opportunities for a novel sustainable development paradigm for the future of the Amazon. We argue for a new development paradigm-away from only attempting to reconcile maximizing conservation versus intensification of traditional agriculture and expansion of hydropower capacity-in which we research, develop, and scale a high-tech innovation approach that sees the Amazon as a global public good of biological assets that can enable the creation of innovative high-value products, services, and platforms through combining advanced digital, biological, and material technologies of the Fourth Industrial Revolution in progress.


Assuntos
Agricultura , Mudança Climática , Conservação dos Recursos Naturais , Brasil , Florestas , Geografia , Produto Interno Bruto , Atividades Humanas , Humanos , Internacionalidade , Transpiração Vegetal/fisiologia , Fatores de Risco , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...